Terdapat perbedaan antara aljabar Boolean dengan aljabar biasa untuk aritmetika bilangan riil :
1. Hukum distributif yang pertama, a . (b + c) = (a . b) + (a . c) sudah dikenal di dalam aljabar biasa, tetapi hukum distributif yang kedua, a + (b . c) = (a + b) . (a + c), benar untuk aljabar Boolean, tetapi tidak benar untuk aljabar biasa.
2. Aljabar Boolean tidak memiliki kebalikan perkalian (multiplicative inverse) dan kebalikan penjumlahan; karena itu, tidak ada operasi pembagian dan pengurangan di dalam aljabar Boolean.
3. Aksioma nomor 4 pada definisi 2.1 mendefinisikan operator yang dinamakan komplemen yang tidak tersedia pada aljabar biasa.
4. Aljabar biasa memperlakukan himpunan bilangan riil dengan elemen yang tidak berhingga banyaknya. Sedangkan aljabar Boolean memperlakukan himpunan elemen B yang sampai sekarang belum didefinisikan, tetapi pada aljabar Boolean dua-nilai, B didefinisikan sebagai himpunan dengan hanya dua nilai, 0 dan 1.
Hal lain yang penting adalah membedakan elemen himpunan dan peubah (variable) pada sistem aljabar. Sebagai contoh, pada aljabar biasa, elemen himpunan bilangan riil adalah angka, sedangkan peubahnya seperti a, b, c dan sebagainya. Dengan cara yang sama pada aljabar Boolean, orang mendefinisikan elemen – elemen himpunan dan peubah seperti x, y, z sebagai simbol – simbol yang merepresentasikan elemen.
Berhubung elemen – elemen B tidak didefinisikan nilainya (kita bebas menentukan anggota – anggota B), maka untuk mempunyai sebuah aljabar Boolean, orang harus memperlihatkan :
o elemen – elemen himpuan B,
o kaidah / aturan operasi untuk dua operator biner dan operator uner,
o himpunan B, bersama – sama dengan dua operator tersebut, memenuhi keempat aksioma di atas.
Jika ketiga persyaratan di atas dipenuhi, maka aljabar yang didefinisikan dapat dikatakan sebagai aljabar Boolean.